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Appendix B

SOME PROPERTIES OF
TRIDIAGONAL MATRICES

B.1 Standard Eigensystem for Simple Tridiagonals

In this work tridiagonal banded matrices are prevalent. It is useful to list some of
their properties. Many of these can be derived by solving the simple linear difference
equations that arise in deriving recursion relations.

Let us consider a stmple tridiagonal matrix, i.e., a tridiagonal with constant scalar
elements a,b, and ¢, see Section 3.4. If we examine the conditions under which the
determinant of this matrix is zero, we find (by a recursion exercise)

det[B(M :a,b.c)] = 0
if

b—l—?@cos(Mmjl) =0, m=12---.M

From this it follows at once that the eigenvalues of B(a, b, ¢) are

)\m:b—l-Q\/Ecos(Mmjl) , m=12---.M (B.1)

The right-hand eigenvector of B(a,b,c) that is associated with the eigenvalue A,
satisfies the equation

B(a,b, c):;m = )\m;m (B.2)

and 1is given by

;m:(xj)m:<g)Tsin[j< mr )] , m=12--.M (B.3)
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These vectors are the columns of the right-hand eigenvector matrix, the elements of
which are

(@) [mT j=1.2 M
X =(zjm) = (c) sin M—I—l] m=1.9 . M (B.4)
Notice that if a = —1 and ¢ =1,
(2)7 _ ii-13 (B.5)
c
The left-hand eigenvector matrix of B(a, b, ¢) can be written
x-1 = 2 <E)mT_lsln|:m-}7T:| mleM
- M+1\a M+1l 5 j=12--M
In this case notice that if a = —1 and ¢ =1
(5) T o emitm1)g (B.6)
a

B.2 Generalized Eigensystem for Simple Tridiag-
onals

This system is defined as follows

b ¢ x e f x

a b c T d e f T9

a b r3 | =\ d e T3
c : f

a b TM d € TM

In this case one can show after some algebra that

det[B(a — Ad.b— Xe,c— Af] =0 (B.7)
if
mr
b—)\me—l—Q\/(a—)\md)(c—)\mf)cos <M—|—1) =0 , m=12,---.M (B.8)
If we define -
6,, = . pm =cosf,
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_eb—2(cd+af)p:, + me\/(ec — fb)(ea —bd) + [(cd — af)pn]’
" e —4fdp?,

The right-hand eigenvectors are

- [a—)\md

el Amf] sin [76,,]

<. 3

1,2, M
1,2, M
These relations are useful in studying relaxation methods.

B.3 The Inverse of a Simple Tridiagonal

The inverse of B(a,b,c) can also be written in analytic form. Let Djys represent the

determinant of B(M : a,b,c)
Dy = det[B(M :a,b,c)]

Defining Dg to be 1, it is simple to derive the first few determinants, thus

Dy =

Dy = b

Dy, = b —ac

Ds = b® —2abc (B.9)

One can also find the recursion relation
DM = bDM_l — CZCDM_Q (BlO)

Eq. B.10 is a linear OAE the solution of which was discussed in Section 4.2. Its
characteristic polynomial P(F) is P(E* — bE + ac) and the two roots to P(c) = 0
result in the solution

1 b4+ v/b? — 4ac M+ B b—b? —4ac M+
V0?2 — 4ac 2 2
M=0.1.2,--- (B.11)

Dy =

where we have made use of the initial conditions Dg = 1 and Dy = b. In the limiting
case when b — 4ac = 0, one can show that

p\ M
DM:(M+1)(§) ;b = dac
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Then for M =4

D3 _CD2 C2D1 —C3D0

B_l _ L —CZDQ D1D2 —CD1D1 C2D1

D4 G2D1 —ClDlDl D2D1 —CDQ

—CZSDO G2D1 —CZDQ D3
and for M =5
D4 —CD3 C2D2 —C3D1 C4D0
1 —Cng D1D3 —CDlDQ C2D1D1 —C3D1
B_l = - a2D2 —aDlDQ DQDQ _CD2D1 C2D2
D5 —CZSDl a2D1D1 —CZDQDl D3D1 —CD3
G4D0 —CZSD1 G2D2 —Cng D4

The general element d,,, 1s

Upper triangle:
m=12---M—-1 ; n=m+1lm+2,---.M

dmn = Dm—lDM—n(_C)n_m/DM

Diagonal:
n=m=1,2,---,M

dm = Dyr—1Dayg— | Dar

Lower triangle:
m=n+1l,n+2.--- M ; n=12,---.M-—1

dmn - DM—mDn—l(_a)m_n/DM

B.4 Eigensystems of Circulant Matrices

B.4.1 Standard Tridiagonals

Consider the circulant (see Section 3.4.4) tridiagonal matrix

By(M :a,b,c,) (B.12)
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The eigenvalues are

2 2
Am = b+ (a+c)cos (%) —i(a — ¢)sin <%> , m=20,1,2,--- .M —1
(B.13)
The right-hand eigenvector that satisfies B,(a. b, c)gm = )\m:;m is
T = (1) = €T g0 1 M —1 (B.14)
where ¢ = y/—1. and the right-hand eigenvector matrix has the form
— ) — ij(me) .] :OlM_l
X = (2jm) = VM " m =0,1,--- . M—1
The left-hand eigenvector matrix with elements 2’ is
I (2 =0.1,---.M—-1
-1 _ o - —zm( ) m s s s
XU =l =57 o M-
Note that both X and X~! are symmetric and that X! = %X*, where X is the

conjugate transpose of X.

B.4.2 General Circulant Systems

Notice the remarkable fact that the elements of the eigenvector matrices X and X!
for the tridiagonal circulant matrix given by eq. B.12 do not depend on the elements
a, b, c in the matrix. In fact, all circulant matrices of order M have the same set of
linearly independent eigenvectors, even if they are completely dense. An example of
a dense circulant matrix of order M = 4 is

bo by by b3
bs by by by
by by by br (B.15)
by by b3 by

The eigenvectors are always given by eq. B.14, and further examination shows that
the elements in these eigenvectors correspond to the elements in a complex harmonic
analysis or complex discrete Fourier series.

Although the eigenvectors of a circulant matrix are independent of its elements,
the eigenvalues are not. For the element indexing shown in eq. B.15 they have the
general form

M-1
)\m — Z bjei(erm/M)
7=0

of which eq. B.13 is a special case.
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B.5 Special Cases Found From Symmetries

Consider a mesh with an even number of interior points such as that shown in Fig.
B.1. One can seek from the tridiagonal matrix B(2M : a. b, a, ) the eigenvector subset
that has even symmetry when spanning the interval 0 < z < #. For example, we seek

the set of eigenvectors z,, for which

a T
a b a T
a
a
a b oal|xy
L a bl |z

I
T2

T2

ZL’l_

This leads to the subsystem of order M which has the form

b a
a b a
B(M:aga);m: ¢
a
a b
a

a

b+a |

By folding the known eigenvectors of B(2M : a., b, a) about the center, one can show

from previous results that the eigenvalues of eq. B.16 are

2m — 1
A = b+ 2a cos (%)

m=12---

M (B.17)
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and the corresponding eigenvectors are Line of Symmetry
.Z;m = sin (J(g;&;ll)ﬂ) s r =0 T =T
7 =1,2,---.M ° o o 0o o O o e
Jj/= 1 2 3 4 5 6
Imposing symmetry about the same interval . M
but for a mesh with an odd number of points, Jj= 123
see Fig. B.1, leads to the matrix M
b a . a. An even-numbered mesh
a b a Line of Symmetry
a
B(M :a,b.a) =
( a Cl) a r = O =T
a b a e 0 0 0o 0o o e
_ 2% b =12 3 4 5
M/
By folding the known eigenvalues of B(2M — j= 123
1 : a,b,a) about the center, one can show M
from previous results that the eigenvalues of b. An odd-numbered mesh
eq. B.17 are - -
Figure B.1 — Symmetrical folds for
special cases

_ (2m — )= _
)\m—b+2acos< Wi ., m=1,2,---.M

and the corresponding eigenvectors are

- . {J@2m = 1)r )
Ty = _ . =1.2.---. M
T sm( 5 .7 2.,

B.6 Special Cases Involving Boundary Conditions

We consider two special cases for the matrix operator representing the 3-point central
difference approximation for the second derivative 9?/0dx? at all points away from the
boundaries, combined with special conditions imposed at the boundaries.
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Note: In both cases

2. M
2 M
4sin’(a/2)

—_

m
J
—2 4 2 cos(a)

When the boundary conditions are Dirichlet on both sides,

-9 1
: _? _; 1 A :_,QJF.QZT (75) (B.18)
| o 1 Ty = SID [](M—l—l)]

When one boundary condition is Dirichlet and the other is Neumann (and a diagonal
preconditioner is applied to scale the last equation),

-2 1
1 -2 1 _ (2m=-1)r
1 -2 1 Am = 22008 | Gy (B.19)
. - (2m=1)7
1 -2 1 Tm = S [J( M+ )]



